A new mix design methodology for recycled aggregate concrete
by combining expenmental/numerlcal approaches
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l. Introduction

. Use recycled aggregates: an important ste
towards a sustainable development

How to formulate and optimize a concret

made of recycled aggregates at a
acceptable price and quality

Develop a new mix design method using a
approach based on the combination @
experimental techniques and numerica
simulation.

Optimize: Elastic properties, fracture Precast elements
resistance, durability characteristics.
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Il. Experimental methodologies

Recycled aggregates

* Using recycled aggregates of known origins

* Crushed aggregates provided by Contern S.A: Crushing of the drainage pipes

Grain composition
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Granulometry analysis of recycled aggregates

This study

Grade 1: Aggregates with the maximum size of 8 mm

Grade 2: Aggregates with the sieve size from 4 to 8 mm
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Il. Experimental methodologies

Evaluation of physical and mechanical properties of recycled aggregates J

Aggregate Crushing Value Test

Los Angeles Abrasion Test
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Il. Experimental methodologies

Evaluation of physical and mechanical properties of recycled aggregates

Loose Bulk Compacted Bulk Density

Density [Kg/L] [Ke/L]
G1 (<8mm) 1.46 1.54
G2 (4mm<=R<=8mm) 1.32 1.41
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Grade ACV %
<8mm EU sieve 59.20
4mm<=R<=8mm EU sieve 22.08
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Il. Experimental methodologies

Evaluation of concrete properties prepared with different grade combinations J

Two concrete mixes are developed

* Aggregates (G1 and G2)

 Cement (Filler 3 and P55)

e Admixture (ACE 456 and Micro 104)
* Water

Mix 1-G1: using the aggregates with the maximum size of 8 mm
Mix 2-G2: using the aggregates with the sieve size from 4 to 8 mm

Optimizing the concrete mixes

Water + Admixture Aggregates (G1) Cement (Filler 3 and P55)

11 December 2018



Il. Experimental methodologies

Evaluation of concrete properties prepared with different grade combinations J

Compressive strength [MPa]

Compression test
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Flexure Strength [MPq]
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Three point flexural test

Flexure strength vs w/c ratio
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Flexural strength

Several preliminary results

Splt Strength [MPa]
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Tensile splitting test
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Tensile splitting strength
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Il. Experimental methodologies

Several results Composition of Concrete

Supplementary Chemical
cementitious

e atecials Admixture

E [GPa] Compressive St Flexural St Splitting St

[MPa] [MPa] [MPa]
Mix | 30.18 57.48 2.47 5.85
Mix Il 34.85 63.01 4.07 4.58
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lll. Proposed approach

~ADMIXTURE

COARSE-~
AGGREGATE

“_FINE AGGREGATE
(SAND)

Tension zone

l

Early-agelbehaviors

Flexural Shear Flexural Flexural / shear
cracks (-) cracks cracks (+) combination cracks
Interfacial modeling
Matrix
Interphd
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Durability Performance

Fracture resistance

Erosion, Abrasion

corrosion of steel
reinforcement in concrete

e

Freeze/thaw cycling

Increase of 9% volum

S ¥)

Phase transformation

water: liquid to ice

Carbonation of concrete

Phase transformation problem
Produce calcium carbonate
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lll. Proposed approach

Interfacial modeling

Early-age cracking
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IV. Early-age behavior of recycled aggregate concrete

Role of early-age behavior in the concrete durability J

Hygro-chemo-thermo-mechanics

Autogenous shrinkage &%
Thermal expansion gth
Creep

H¢at of hydration

Microcracking Macrocracking

Recycled concretes:

* Increase of the shrinkage

* Sensibility with the early-age cracking

* Strongly alter the durability performance

Temperature Field T*

~
3

Phase Field d

- .
25 30

Contributions J

Hydration degree a

Phase field model with coupled multi-physics process r
 Coupling chemo-thermo-mechanical problems N—

- .
e Heat of hydration, thermal expansion 0 05 1

* Material strength development
e Autogenous shrinkage
* Basic creep, thermal transient creep

| Phase field multiphysics
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IV. Early-age behavior of recycled aggregate concrete

Numerical prediction of the early-age behaviors
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IV. Early-age behavior of recycled aggregate concrete

Confronting Model/Experiment: unreinforced concrete | Description of the present concrete mix
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IV. Early-age behavior of recycled aggregate concrete

Several conclusions

e Critical shrinkage properties
* A high risk of cracking
* Major damage cause: thermal expansion and autogenous shrinkage

* |Important effects of creeps at the early-age

Solutions should be adapted

Using admixture: Shrinkage-reducing agent, Super-adsorbent polymer particles

Changing cement: Portland cement containing higher C2S content

Internal water curing of concrete

Replacing normal weight aggregate with pre-saturated lightweight aggregate
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IV. Evaluation of fracture resistance

Experiment

o) v\ i oF . \
> » ; W E

Durability of concrete made of recycled aggregates

Purpose Cohesive interface

e Developing numerical tool to accurately predict ([
mechanical performance and durability: crack
initiation/propagation, fracture resistance.

e Evaluating the effects: aggregates, cements, etc

—> Key aspects controlling mechanical properties

Contributions j

* Numerical framework- Phase field method
* Microcracking - Complex microstructure - explicitly by image XRCT
* Confronting model/experiment

Simulation
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IV. Evaluation of fracture resistance

Confronting between experiment/model

)

In-situ compression test + XRCT

Experimental observation

DVC-based subtraction image

Image-based models

Phase field method

Numerical prediction
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IV. Evaluation of fracture resistance

Analysis of the effects of aggregates and cement

ibed displacement

i X

Geometry and boundary conditions

Numerical results |

Large-scale simulations of quasi-brittle microcracking in realistic highly 0,005 ———
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IV. Evaluation of fracture resistance

~aggregate

cement
matrix : 6
— 30 um" 20kV
X500 16 mm

Role of interfacial transition zone J

* Weak region
* Preferential zone of cracking
e Strongly affect the strength of concrete materials

—2m .. 20kV

What? Why? And How? X10.000 15 mm

How to control the interfacial effects?
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IV. Evaluation of fracture resistance

Interfacial decohesionv

e Using equivalent interface Interphase regio

e Possibly handle complex
geometry/properties of interface

* Accurately predict the mechanical behavior

Fricti ntact behavior

—> Control the influences of interface I
—> Provide the key aspects for material design. Inclusion ¢ t([[u

U — Matrix

Equivalent interface
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IV. Evaluation of fracture resistance

Analysis of interface effects on the global behavior of material
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Material properties

Soft interface (SI1): g, = 4x107° [kN/mm]
Soft interface (SI2): g, = 2.5x10* [kN/mm]
Stiff interface (Cl): ¢,=5%1073 [kN/mm]

-

.- Expectation

Parameter Matrix Inclusion Soft interface Stiff interface Unit e Effects of interface properties

A 18 60 45x10~% 6x10° GPa

y 12 39 3 % 10-2 4 x 103 GPa * How it changes mechanical behavior
Phases Fracture resistance [kN/mm]| * Which one is the best solution?
Matrix 5x 1074 K
Inclusion 3% 1072

~

/
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IV. Evaluation of fracture resistance

Soft interface (SI1):

y [mm]

0 0.5 1 1.5
X [mm] X [mm]
(a) Uy = 0.0185 mm (b) Uy = 0.02236

Damage/Fracture: mostly in the interfacial regions
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IV. Evaluation of fracture resistance

Soft interface (SI12):

0 0.5 1 15 0 0.5 1 15
X [mm] X [mm]
(a) Uy = 0.0248 mm (b) Uy = 0.0260

Damage/Fracture: in both the interfacial regions
and bulk phases
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IV. Evaluation of fracture resistance

Stiff interface (Cl):

y [mm]

0 0.5 1 1:8
X [mm] X [mm]

(a) Uy = 0.01645 mm (b) U, = 0.01658

Damage/Fracture: mostly in the bulk phases

11 December 2018 23



IV. Evaluation of fracture resistance
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e Soft interface + high interfacial fracture strength: good for post-cracking behavior

e Stiff interface + high interfacial fracture strength: increase the stiffness
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IV. Evaluation of fracture resistance

Optimizing morphologies, distributions of heterogeneities

1 1

08 08
N—‘.—— 0.08
06 06

@ 0.07 |
04 04
& 0.06 |
02 02
® o ) = 005 |
0 0 =
0 02 04 06 08 1 0 02 04 06 08 1 g 0.04 |
S}
' A % 003}
08 08 z 0.02 |
08 s" 08 —< 0.01
-~
04 04 0 L L L '
: 0 0.002 0.004 0.006 0.008 0.01
02 02 Displacement [mm]
— v
°~% 02 04 06 08 1 °~% 02 04 06 08 1 Predicted mechanical performancefor
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sion
’ The effects of constitute behavior, phase morphology, phase

distribution, phdse size scale, and interphase bonding on fracture toughness. In
particular, a combination of fine microstructure size scale, smooth aggregate
morphology, appropriately balanced interphase bonding strength and compliance can
enhance the fracture toughness.
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IV. Evaluation of fracture resistance

Several conclusions

* Low fracture resistance
* High risk of damage/cracking

* Strong impacts of interfacial behaviors

Beside the ratio Cement — Water — Aggregates and admixtures
* Optimize the morphologies of the aggregates
* Improve the bonding cement/aggregate

* Enhance the distribution of heterogeneities (aggregates)

Need to be investigated more
» Different interface types in recycled concretes
* Inelastic behavior due to complex interfaces

 Damping performance
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V. Durability analysis

Reinforcement corrosion in concrete structures J

* Carbonation, chloride,...
* Cement composition

* Impurities in aggregates
* Admixtures

* w/cratio

* Cement content

BEFORE CORROSION. BUILD-UP OF FURTHER CORROSION.
CORROSION PRODUCTS. SURFACE CRACKS.
STAINS.

Corrosion products take up more volume than the original steel consumed, a pressure is
build up in the interface between reinforcement and concrete. The increase in pressure
eventually leads to cracking of the concrete cover

Numerical modeling of cracking of concrete due to corrosion J

Corrosion initiated Tensile stress builtup Crack formation
wv
k9]
=)
ao]
o
(18
=
kel
A A
Concrete Concrete 8 Concrete Concrete
Phase transformation model +Interfacial decohesion Phase field model
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V. Durability analysis

Numerical modeling of cracking of concrete due to corrosion

=(

S 10N Recycled Concrete is cracked at the strain expansion (of steel): 0.3 %

Con

There are several factors related to the recycled concrete quality, which could lead
to corrosion problem, such as w/c ratio, cement content, impurities in the concrete
ingredients, presence of surface cracks, etc.

11 December 2018 28



V. Durability analysis

Behavior of recycled aggregate concrete in a real application

l Force

Recycled aggregate concrete

Reinforced bar

Boundary conditions

Reinforced concrete beam

Material properties

E [GPa] Poisson’s ration Fracture energy Tensile strength
[N/m] [MPa]
Concrete (Mix 1) 30.18 0.22 124 5.4
Steel bar 250 0.3 9310 463
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V. Durability analysis

Behavior of recycled aggregate concrete in a real application

Observed fracture phenomena
l Prescribed Force

A
Crack spacing of reinforced concrete

..|0 N The recycled aggregates concrete gives a comparable resistance
30
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Conclusions

Formulate/optimize new concrete mixtures made of recycled aggregates

* Characterize physical/mechanical properties of aggregates
* Characterize the mechanical performance of recycled aggregates concrete

* Propose new approach combining experiment and model
= Early-age behavior

Fracture resistance

Durability performance

Real applications

=?» Define several designed factors
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